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Scene Understanding: Definition

Scene Understanding describes the cognitive process of transforming 
raw visual input into a semantic scene representation.

Raw Visual 
Data 

Scene 
Representation

Scene 
Understanding

Examples:

Color images

Depth images

Point clouds

Examples:

Pixel-wise Labeling

Object bounding boxes

Scene graph
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Scene Understanding: Geometric Information

• High information density

• Artificial data format
Object Mesh

• Regular structure (3D grid)

• Sparse data representation

• Regular structure (2D grid)

• RGB: color, RGB-D: color + depth

• Natural 3D representation

• Unordered sets

Image

(RGB / RGB-D)

Voxel Grid

Point Cloud

Image from Li, Y., Pirk, S., Su, H., Qi, C. R., & Guibas, L. J. (n.d.). FPNN: Field 
Probing Neural Networks for 3D Data; https://arxiv.org/abs/1605.06240

https://arxiv.org/abs/1605.06240
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Scene Understanding: Pixel-wise Labeling

Pixel-wise labeling annotates each pixel of the input image with a semantic 
label, e.g. floor, wall, and sofa.

S. Gupta, P. Arbelaez, and J. Malik. “Perceptual organization and 
recognition of indoor scenes from RGB-D images,” CVPR (2013).

Scene 
Understanding
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Classification and localization of multiple objects

Localization: Bounding box around the detected object

Scene Understanding: Object Bounding Boxes

Scene 
Understanding

Redmon, Joseph, and Ali Farhadi. "YOLO9000: better, faster, stronger,” CVPR (2017).
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Scene Understanding: Primitive Extraction

Segment input into separate objects or object parts

For each segment: Fit a geometric primitive

Geometric primitives: planes, boxes, cylinders, spheres, …

Scene 
Understanding
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Scene Understanding: Support Graph

Physical relationship between objects:
Which objects are supported by which other objects?

Representation: Graph

Nodes: objects

Edges: support relations

R. Kartmann, F. Paus, M. Grotz and T. Asfour, "Extraction of Physically Plausible 
Support Relations to Predict and Validate Manipulation Action Effects," RA-L (2018)

Scene 
Understanding



Robotics III – Sensors and Perception| Chapter 69

Levels of Semantic Understanding
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High

Low

Object 
Instances

Object 
Relations

Color Images
Depth Images
Point Clouds

Object Instance 
Detection
Object Localization
6D Pose Estimation

Spatial Relations
Temporal Relations
Support Relations

Dog

Bike Truck

Porch
Street

On

Annotated 
Images

Classification
Bounding Boxes
Pixel-wise Labeling
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Image Classification and Object Localization

Image classification assigns one label from a predefined set of class labels to 
an input image

Object localization additionally finds the parts of an image belonging to the 
determined instance of an object class

Image 
Classification

…

Dog

Cat

Bird

…

Object 
Localization
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Single-object image classification assigns one class label per input image

Multi-object image classification assigns more than one class label per input 
image

Cat Cat

Cat, Dog, Duck Cat, Dog, Duck

Image Classification: Single vs. Multiple Objects
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Object Detection using Bounding Boxes

Object detection is a multi-object image classification and localization task

Determines bounding boxes of every detected object in the image

Assigns the label of the object class to each bounding box

A detected object can be described by its center 𝑏𝑥, 𝑏𝑦 , 

its width 𝑏𝑤 and its height  𝑏ℎ

Dog, Bike, Truck

𝑏𝑥 , 𝑏𝑦

𝑏𝑤

𝑏ℎ
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Object Detection for Multiple Objects (I)

Reuse image classification for detection of multiple objects

Sliding window

Region Proposal Networks (RPN) to
generate boxes

Sliding window over the input image

Run image classification on each window

Example: Region-based CNN (R-CNN), 
Fast R-CNN

R. B. Girshick, "Fast R-CNN", ICCV, pp. 1440-1448 (2015)



Robotics III – Sensors and Perception| Chapter 616

Object Detection for Multiple Objects (II)

Region Proposal Networks (RPN)

Use a network to propose possible object bounding boxes (image regions)

Only run the image classifier on the proposed bounding boxes

Example: Felzenszwalb et al., 2010

Disadvantages of reusing image classification for object detection

Performance: Classification needs to be run for each window

Complexity: Classification and bounding box proposal are different systems
which need to be trained/configured separately

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object 
detection with discriminatively trained part based models”. TPAMI (2010)
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Object Detection using YOLO

YOLO (You Only Look Once) solves multi-object detection as a single regression 
problem (compared to sliding window or RPN approaches)

Input: Color image

Output: Bounding boxes, class label and class probability

Uses a multi-layer convolutional neural network

The network structure is simpler than most other state-of-the-art methods 
which allows real-time execution on modern GPUs

Open Source: https://pjreddie.com/darknet/yolo/

Redmon, Joseph, and Ali Farhadi. "YOLO9000: better, faster, stronger.” In CVPR (2017).

https://pjreddie.com/darknet/yolo/
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YOLO: Overview

Split the image into a 𝑆 × 𝑆 grid

Predict B bounding boxes per grid cell

Classify each grid cell

Use non-maximum suppression to 
filter bounding boxes (detect every object only once)

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A., “You only 
look once: Unified, real-time object detection”. ICVPR (2016)
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YOLO: Bounding Box Prediction

Predict 𝐵 bounding boxes per grid cell

Each cell is responsible for detecting objects whose center falls into the 
corresponding cell

Each bounding box can be described by 5 parameters

Geometric parameters 𝑏𝑥, 𝑏𝑦 , 𝑏𝑤, 𝑏ℎ

Confidence of object detection

Since the grid has the size 𝑆 × 𝑆, the network predicts (𝑆2 ⋅ 𝐵 ⋅ 5)
parameters for the bounding boxes
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Predict 𝐶 conditional class probabilities per grid cell 

𝑃 Class𝑖 Object : Probability of class 𝑖 given an object exists in the grid cell

The image on the right color-codes the most likely class label, but YOLO 
predicts probabilities for all classes

Classification is only done once per cell not per bounding box

The network predicts (𝑆2⋅ 𝐶) class probabilities

YOLO: Classification

Truck

Bike

Dog

Floor
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YOLO: Single Regression Model

Single Regression

Input: 448 × 448 × 3 RGB color image

Output: 𝑆2 ⋅ (𝐵 ⋅ 5 + 𝐶)

Bounding box values: 𝑆2 ⋅ 𝐵 ⋅ 5

Class probabilities: 𝑆2 ⋅ 𝐶

Model: Multi-layer CNN

Convolutional layers

Max-pooling layers

Training

Pre-trained convolutional layers (ImageNet 1000-class)

Add layers to predict desired output
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The network predicts multiple bounding boxes per cell

Most of the predicted boxes will have 

Low confidence or

Overlap with other boxes with a higher confidence

Non-maximum suppression discards bounding boxes which have

a confidence below a certain threshold or

the largest shared area with other boxes

YOLO: Non-maximum Suppression
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YOLO: Pipeline

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A., “You only 
look once: Unified, real-time object detection”. ICVPR (2016)

𝑆 × 𝑆 × 𝐵
Bounding Boxes

𝑆 × 𝑆 Grid 
Cells

𝑆 × 𝑆
Classifications

Final 
Detections
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Object Detection using YOLO: Example

https://www.youtube.com/watch?v=MPU2HistivI

https://www.youtube.com/watch?v=MPU2HistivI
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Example: YOLO on ARMAR-III
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Segmentation

Problem: 

Given an input image (RGB/RGB-D) or point cloud.

We want an element-wise labelling of …

segment ID (usually an integer)

Class, type, role, … (→ semantic segmentation)

instance ID (→ instance segmentation)

Question: What constitutes a “segment”?

Regions of similar color, shape, appearance, …

Objects, object parts, surfaces, …

⇒ Depends on the task! S. Gupta, P. Arbelaez, and J. Malik. “Perceptual organization and 
recognition of indoor scenes from RGB-D images,” CVPR (2013).
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Segmentation: Image vs. Point Cloud

An image is a 2D grid of pixels with RGB or RGB-D information.

⇒ Adjacency (i.e. neighboring pixels) is clear.

Convolutions can be applied (→ filters).

Resolution is homogeneous and (usually) constant.

A point cloud is a collection of 3D points with XYZ and RGB information.

No specific order ⇒ Finding neighboring points is more difficult/time consuming.

Resolution is inhomogeneous and variable (e.g. when registering multiple point clouds).

Contains explicit 3D information ⇒ Allows to find …

clusters which are spatially separated

edges where (estimated) surface normals change



Robotics III – Sensors and Perception| Chapter 628

Examples from PCL (Point Cloud Library)
https://pointclouds.org/

Usually require fine-tuning of parameters.

Segmentation: Example of Classical Methods
Input

Euclidean Clustering

Nearest neighbor clustering using 
Euclidean distance

Region Growing
Grows segments from a seed until 
thresholds are met (e.g. normal).

LCCP (Local convexity connected patches)

Groups oversegmeted patches to 
convex shapes.

https://pointclouds.org/
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Point Cloud Segmentation with Neural Networks

Point Clouds are inherently unstructured

Neural Networks need ordered input

PointNet applies symmetrical function, i.e. 
max-pooling, avg-pooling …

→ Result is independent of the
ordering of the point set

→ Result is independent of the 
number of input points

Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2016). PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
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Scene Representation: Object Instances

A scene can be represented as a set of object instances

Representation of object instances

Class label

Instance identifier

Localization information

Localization information

Object instance segmentation

6D object pose

Scene Understanding
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Object Instance Segmentation

Object instance segmentation determines the part of an image which belong 
to the corresponding object instances

Parts of an image can be determined on different detail levels

Approximate: Bounding Box

Exact: Pixel-wise Labeling

Bounding Box Pixel-wise Labeling
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Instance Segmentation with Mask R-CNN

Mask R-CNN performs the following tasks

Multi-object image classification and detection in form of bounding boxes

Pixel-wise labeling of each bounding box

Method

Extraction of bounding boxes

Region proposal network for object candidates

Run image classification for each proposed region

Pixel-wise labeling

Fully-convolutional network for 
semantic segmentation

Run semantic segmentation for each bounding box

He, K., Gkioxari, G., Dollár, P., and Girshick, R, “Mask R-CNN”. ICCV (2017)
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6D Pose Estimation

6D pose estimation determines the position and orientation of a detected object in 
the camera’s coordinate system

Relevant for detection and localization of known objects

Typical representations of a 6D pose:

Homogenous transformation matrix 𝑇 =
𝑅 𝑡
0 1

with rotation matrix 𝑅 ∈ ℝ3×3

and translation vector 𝑡 ∈ ℝ3

Orientation as unit quaternion 𝑞 ∈ 𝐻 and a translation vector 𝑡 ∈ ℝ3

6D Pose Estimation

𝑇dog 𝑇bike 𝑇truck

Object Instance Set
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Pose Estimation using Harris/SIFT

Goal: Robust, real-time pose estimation of known objects

Idea: Combine

Harris corner detector and

SIFT (Scale Invariant Feature Transform) descriptors

Steps

Hough Transform

RANSAC (Random Sample Consensus)

Least squares homography estimation

Azad, P., Asfour, T., and Dillmann, R., "Combining Harris interest points and 
the SIFT descriptor for fast scale-invariant object recognition." IROS (2009)

Details about corner detectors and 
features in a previous chapter
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Pose Estimation using Harris/SIFT: Example

3D model drawn as an overlay to show the pose estimation result
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Scene Representation: Object Relations

A scene can be represented as object instances and their relations

Given a set of object instances 𝒪, a binary relation between object instance 
pairs is element of the set 𝑅 ⊆ 𝒪 × 𝒪

If and only if the relation holds between objects 𝑜𝑖 ∈ 𝒪 and 𝑜𝑗 ∈ 𝒪, 

then 𝑜𝑖 , 𝑜𝑗 ∈ 𝑅

Example above:

Object instance set 𝒪 = {𝐷𝑜𝑔, 𝐵𝑖𝑘𝑒, 𝑇𝑟𝑢𝑐𝑘, 𝑃𝑜𝑟𝑐ℎ, 𝑆𝑡𝑟𝑒𝑒𝑡}

Binary relation 𝑅𝑜𝑛 = { 𝐷𝑜𝑔, 𝑃𝑜𝑟𝑐ℎ , 𝐵𝑖𝑘𝑒, 𝑃𝑜𝑟𝑐ℎ , (𝑇𝑟𝑢𝑐𝑘, 𝑆𝑡𝑟𝑒𝑒𝑡)}

Dog

Bike Truck

Porch
Street

On

Scene Understanding
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Binary object relations can be encoded as a directed graph

A directed graph 𝐺 = 𝑉, 𝐸 consists of

Set of vertices 𝑉

Set of ordered pairs called edges 𝐸

Construction of a directed graph 𝐺𝑅 = (𝑉𝑅 , 𝐸𝑅)
based on object relations 𝑅 ⊆ 𝒪 × 𝒪

The set of object instances is the node set: 𝑉𝑅 = 𝒪

The binary relation is the edge set: 𝐸𝑅 = 𝑅

Example:

Object Relations: Graph Representation

𝒪 = {𝐷𝑜𝑔, 𝐵𝑖𝑘𝑒, 𝑇𝑟𝑢𝑐𝑘, 𝑃𝑜𝑟𝑐ℎ, 𝑆𝑡𝑟𝑒𝑒𝑡}
𝑅𝑜𝑛 = { 𝐷𝑜𝑔, 𝑃𝑜𝑟𝑐ℎ , 𝐵𝑖𝑘𝑒, 𝑃𝑜𝑟𝑐ℎ , (𝑇𝑟𝑢𝑐𝑘, 𝑆𝑡𝑟𝑒𝑒𝑡)}

Dog

Bike Truck

Porch
Street

On
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Object Relation Types

Object relations differ in their

Type

Temporal context

Example types of relations: spatial, support

Temporal context

Static: Consider a single frame

Dynamic: Consider changes over time

Above Right Contained

Spatial Relations Support Relations
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Spatial Relations

Spatial relations describe the relative position of two objects

Different temporal context of spatial relations

Static

Dynamic

Above Right Contained

Static Spatial Relations Dynamic Spatial Relations

Moving 

together

Getting 

closer

Moving 

apart

Ziaeetabar, F., Aksoy, E. E., Wörgötter, F., and Tamosiunaite, M., “Semantic analysis of 
manipulation actions using spatial relations.” ICRA, 2017
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Extraction of Spatial Relations from RGB-D

Depth

RGB

2D Object 
Detection

2D Human 
Pose

Spatial 
Relation Graph3D Bounding Boxes

Instance Tracking
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Support Relations

For two objects 𝐴, 𝐵 ∈ 𝒪 we denote SUPP(𝐴, 𝐵)
iff. removing 𝐴 causes 𝐵 to lose its motionless state, i.e. 𝐴 supports 𝐵.

Representation: Support Graph

➔ Transitively reduced

Mojtahedzadeh, R., Bouguerra, A., Schaffernicht, E., and Lilienthal, A. J., “Support relation analysis and decision 
making for safe robotic manipulation tasks”. Robotics and Autonomous Systems (2015)
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Extraction of Support Relations

Input point cloud from RGB-D camera

Segment into object hypotheses (LCCP, Region Growing)

Extract object geometry (RANSAC)

Build support graph

R. Kartmann, F. Paus, M. Grotz and T. Asfour, "Extraction of Physically Plausible Support Relations to Predict and 
Validate Manipulation Action Effects," Robotics and Automation Letters (RA-L), 2018 
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Manipulation of Object Relations

Problem so far: Scene → Relations
Which relations are present in the scene? 
(discriminative)
Useful for, e.g., action recognition

Problem now:
Where to place objects to realize a spatial 
relation ⇒ Find suitable placing position

Scene𝑡 , Relation → Scene𝑡+1

What is the best object placement to realize a spatial 
relation (generative)
Useful for, e.g., action execution

Put the apple tea in front of the corny.

Let the apple tea be on the other side of
the corny.
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Generative Model for Spatial Relations

Place an object according to a spatial relation 
⇒ Find suitable placing position

Idea: Use discriminative models?

Problem: Which target position in the valid 
areas to choose?

Better: Use generative models.

Model a spatial relation as a probability 
distribution over placing positions.

Sample from distribution to find suitable 
placing positions.

left

around

left around
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Spatial Relations: Polar Coordinates

Goal: Suitable representations of spatial relations in a two-dimensional plane.

How to model, e.g., “around” in a simple manner?

(Multivariate) Gaussian: peak in the center

GMM1: complex, requires many components

Alternative idea: Use distance and direction instead of 𝑥, 𝑦

⇒ Probability distribution in polar coordinates

Kartmann, R., Zhou, Y., Liu, D., Paus, F., and Asfour, T., “Representing Spatial Object Relations as Parametric 
Polar Distribution for Scene Manipulation Based on Verbal Commands.” IROS 2020 

around
high 𝑝

low 𝑝

1 Gaussian Mixture Model
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Spatial Relations: Polar Distribution

Use distance and direction instead of 𝑥, 𝑦 ⇒ Distribution in polar coordinates

Distribution defined in polar coordinate system (PCS) at reference object.

Cartesian 𝑝 = 𝑥 𝑦 𝑇 → Polar 𝑞 = 𝑑 𝜙 𝑇 ∈ ℝ2

Distance: 𝑑 ~ 𝒩 𝜇𝑑 , 𝜎𝑑
2 (Gaussian)

Angle:       𝜙 ~ ℳ 𝜇𝜙, 𝜎𝜙
2 (von Mises; circular normal 

distribution)

Consider 𝑑 and 𝜙 independent:

𝑝 𝑑, 𝜙 = 𝑝 𝑑 𝜇𝑑 , 𝜎𝑑
2 ⋅ 𝑝 𝜙 𝜇𝜙, 𝜎𝜙

2

Means 𝜇𝑑 > 0, 𝜇𝜙 ∈ −𝜋, 𝜋

Variances 𝜎𝑑
2, 𝜎𝜙

2 ∈ ℝ+

𝜙

𝑑

𝑝𝑅
𝑥

𝑦

𝑝 =
𝑥
𝑦

𝑞 =
𝑑
𝜙
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Spatial Relations: Estimating Polar Distribution

Polar distribution has a simple form
⇒ Can be estimated from data using Maximum Likelihood Estimation (MLE).

Example: “Left”: 𝜇𝜙 ≈ ±𝜋

𝜙

𝜙

𝑑

𝑝𝑅
𝑥

𝑦
𝑝 =

𝑥
𝑦

𝑞 =
𝑑
𝜙

Polar Space Cartesian Space
𝜋

−𝜋

right

left

left

𝑑

cyclic
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Left Right
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Spatial Relations: Static Relations

Static relations: Depend only on reference object’s current position.

Define 𝑑 = 0 as reference object’s size ⇒ adapt the distribution to the object size.

Left vs Right: 

Mainly differ in mean direction 𝜇𝜙
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Static relations: Depend only on reference object’s current position.

Define 𝑑 = 0 as reference object’s size ⇒ adapt the distribution to the object size.

Near vs. Far vs. Inside:

Mainly differ in mean distance 𝜇𝑑

High direction variance 𝜎𝜙
2

Near Far Inside

P
o

la
r

C
ar

te
si

an

Spatial Relations: Static Relations
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Closer Further Other side
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Dynamic relations: Dependent on target object. ⇒ Align polar coordinate system so:

𝑑 = 1 ≙ initial distance to target object.

𝜙 = 0 ≙ initial direction to target object.

Closer:
𝜇𝑑 ≈ 0.5, 𝜇𝜙 = 0

⇒ between objects

Farther:
𝜇𝑑 > 1, 𝜇𝜙 = 0

⇒ farther than current distance

Other side:
𝜇𝑑 ≈ 1, 𝜇𝜙 = ±𝜋

⇒ 180° away from current direction

Spatial Relations: Dynamic Relations

𝑑 = 1 𝑑 = 1

𝑑 = 1
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Machine Learning for Object Relations

Goal: Use Machine Learning (ML) to predict object relations

Requirements

Number of objects is variable

Result should be order invariant

Problems with standard ML approaches

Input size must be fixed

Order of the input is relevant

Learn
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ML for Object Relations: Classical Approach

Stack objects properties (pose, color, size, …) into a single input 
vector

Use a Multi-Layer Perceptron to produce the desired output

Encode the output as an adjacency matrix containing support 
relations

0 0 0
1 0 0
0 0 0
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ML for Object Relations: Problems

How to handle variable number of objects?

Stacked input vector has different dimension

Output matrix has different dimension

0 0 0
1 0 0
0 0 0
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ML for Object Relations: Problems

How to handle order of objects?

Order is arbitrary

Train on all combinations of 𝑛 objects: 𝑛!

Computationally expensive 

Solution: Graph Networks 

0 0 0
1 0 0
0 0 0
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Graph Networks

Graph networks operate on graph structures (input and output are graphs) 

Graph 𝐺 = 𝑉, 𝐸, 𝒖
Vertices 𝑉
Edges 𝐸
Global attributes 𝒖

Central building block is a GN block
Input graph 𝐺 = 𝑉, 𝐸, 𝒖
Output graph 𝐺′ = 𝑉′, 𝐸′, 𝒖′
Vertices, edges and attributes can change

Code: https://github.com/deepmind/graph_nets
Battaglia, P. W. et al. “Relational inductive 
biases, deep learning, and graph networks.” 
arXiv preprint arXiv:1806.01261 (2018).

Full GN Block

https://github.com/deepmind/graph_nets
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Graph Networks: GN Block

Graph Networks (GNs) as proposed by Battaglia et al., 2018

Basic building block: GN Block

Input Graph Output Graph

GN Block

Battaglia, P. W. et al. “Relational inductive biases, deep learning, and graph 
networks.” arXiv preprint arXiv:1806.01261 (2018).
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Graph Networks: Graph Representation

Directed, attributed multi-graph

Nodes 𝑉 = 𝒗𝑖 𝑖 ∈ 1, 𝑁𝑣

Node attributes 𝒗𝑖 ∈ ℝ𝑑𝑣

Edges 𝐸 = 𝒆𝑘 , 𝑟𝑘 , 𝑠𝑘 𝑘 ∈ 1, 𝑁𝑒 , 𝑟𝑘 , 𝑠𝑘 ∈ 1, 𝑁𝑣

Edge attributes 𝒆𝑘 ∈ ℝ𝑑𝑒

Receiver node index 𝑟𝑘

Sender node index 𝑠𝑘

Global attribute 𝑢 ∈ ℝ𝑑𝑢

𝑢

𝑣1

𝑣2

𝑣3
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Graph Networks: GN Block

Graph Networks (GNs) as proposed by Battaglia et al., 2018

Basic building block: GN Block

Input Graph Output Graph

GN Block
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Consists of three update and three aggregation functions

Update Φ𝑒 , Φ𝑣, Φ𝑢

Aggregate 𝜌𝑒→𝑣, 𝜌𝑒→𝑢, 𝜌𝑣→𝑢

Process:

Graph Networks: GN Block

Full GN Block

𝑢

𝑣1

𝑣2

𝑣3
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Consists of three update and three aggregation functions

Update Φ𝑒 , Φ𝑣, Φ𝑢

Aggregate 𝜌𝑒→𝑣, 𝜌𝑒→𝑢, 𝜌𝑣→𝑢

Process:

1. Update edges depending on sender, receiver and global state

𝒆𝑘
′ = Φ𝑒 𝒆𝑘 , 𝑣𝑟𝑘

, 𝑣𝑠𝑘
, 𝒖

Graph Networks: GN Block

𝑢

𝑣1

𝑣2

𝑣3
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Consists of three update and three aggregation functions

Update Φ𝑒 , Φ𝑣, Φ𝑢

Aggregate 𝜌𝑒→𝑣, 𝜌𝑒→𝑢, 𝜌𝑣→𝑢

Process:

1. Update edges depending on sender, receiver and global state

𝒆𝑘
′ = Φ𝑒 𝒆𝑘 , 𝑣𝑟𝑘

, 𝑣𝑠𝑘
, 𝒖

Graph Networks: GN Block

𝑢

𝑣1

𝑣2

𝑣3
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Consists of three update and three aggregation functions

Update Φ𝑒 , Φ𝑣, Φ𝑢

Aggregate 𝜌𝑒→𝑣, 𝜌𝑒→𝑢, 𝜌𝑣→𝑢

Process:

1. Update edges depending on sender, receiver and global state

𝒆𝑘
′ = Φ𝑒 𝒆𝑘 , 𝑣𝑟𝑘

, 𝑣𝑠𝑘
, 𝒖

Graph Networks: GN Block

𝑢

𝑣1

𝑣2

𝑣3
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Consists of three update and three aggregation functions

Update Φ𝑒 , Φ𝑣, Φ𝑢

Aggregate 𝜌𝑒→𝑣, 𝜌𝑒→𝑢, 𝜌𝑣→𝑢

Process:

1. Update edges depending on sender, receiver and global state

𝒆𝑘
′ = Φ𝑒 𝒆𝑘 , 𝑣𝑟𝑘

, 𝑣𝑠𝑘
, 𝒖

Graph Networks: GN Block

𝑢

𝑣1

𝑣2

𝑣3
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Consists of three update and three aggregation functions

Update Φ𝑒 , Φ𝑣, Φ𝑢

Aggregate 𝜌𝑒→𝑣, 𝜌𝑒→𝑢, 𝜌𝑣→𝑢

Process:

1. Update edges depending on sender, receiver and global state

𝒆𝑘
′ = Φ𝑒 𝒆𝑘 , 𝑣𝑟𝑘

, 𝑣𝑠𝑘
, 𝒖

2. Update receiving nodes

𝒗𝑖′ = Φ𝑣 𝒗𝑖 , 𝒖, 𝜌𝑒→𝑣 𝐸𝑖
′

𝐸𝑖
′: Incoming edges to 𝒗𝑖, i.e. 𝑟𝑘 = 𝑖

Graph Networks: GN Block

𝑢

𝑣1

𝑣2

𝑣3
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Consists of three update and three aggregation functions

Update Φ𝑒 , Φ𝑣, Φ𝑢

Aggregate 𝜌𝑒→𝑣, 𝜌𝑒→𝑢, 𝜌𝑣→𝑢

Process:

1. Update edges depending on sender, receiver and global state

𝒆𝑘
′ = Φ𝑒 𝒆𝑘 , 𝑣𝑟𝑘

, 𝑣𝑠𝑘
, 𝒖

2. Update receiving nodes

𝒗𝑖′ = Φ𝑣 𝒗𝑖 , 𝒖, 𝜌𝑒→𝑣 𝐸𝑖
′

𝐸𝑖
′: Incoming edges to 𝒗𝑖, i.e. 𝑟𝑘 = 𝑖

Graph Networks: GN Block

𝑢

𝑣1

𝑣2

𝑣3
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Consists of three update and three aggregation functions

Update Φ𝑒 , Φ𝑣, Φ𝑢

Aggregate 𝜌𝑒→𝑣, 𝜌𝑒→𝑢, 𝜌𝑣→𝑢

Process:

1. Update edges depending on sender, receiver and global state

𝒆𝑘
′ = Φ𝑒 𝒆𝑘 , 𝑣𝑟𝑘

, 𝑣𝑠𝑘
, 𝒖

2. Update receiving nodes

𝒗𝑖′ = Φ𝑣 𝒗𝑖 , 𝒖, 𝜌𝑒→𝑣 𝐸𝑖
′

𝐸𝑖
′: Incoming edges to 𝒗𝑖, i.e. 𝑟𝑘 = 𝑖

Graph Networks: GN Block

𝑢

𝑣1

𝑣2

𝑣3
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Consists of three update and three aggregation functions

Update Φ𝑒 , Φ𝑣, Φ𝑢

Aggregate 𝜌𝑒→𝑣, 𝜌𝑒→𝑢, 𝜌𝑣→𝑢

Process:

1. Update edges depending on sender, receiver and global state

𝒆𝑘
′ = Φ𝑒 𝒆𝑘 , 𝑣𝑟𝑘

, 𝑣𝑠𝑘
, 𝒖

2. Update receiving nodes

𝒗𝑖′ = Φ𝑣 𝒗𝑖 , 𝒖, 𝜌𝑒→𝑣 𝐸𝑖
′

𝐸𝑖
′: Incoming edges to 𝒗𝑖, i.e. 𝑟𝑘 = 𝑖

3. Update the global state

𝒖′ = Φ𝑢 𝒖, 𝜌𝑒→𝑢 𝐸′ , 𝜌𝑣→𝑢 𝑉′

Graph Networks: GN Block

𝑢

𝑣1

𝑣2

𝑣3
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Inductive Bias 

Structuring a learning problems introduces 
Inductive Bias 

Examples: 
CNNs use convolutional kernels

Translational invariance: Features can be extracted 
independent of their pixel position (same kernel)

Locality: Features depend only on 
neighboring pixels

SE3-Nets (Byravan and Fox, 2017) use SE(3) transformations
Objects move like rigid bodies

CC license by Michael Plotke

https://creativecommons.org/licenses/by-sa/3.0/deed.de
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Graph Networks: Relational Inductive Bias

Update functions Φ𝑒 , Φ𝑣, Φ𝑢

Are reused for all nodes and edges (similar to convolutional kernels)

Implementation: MLP, CNN

Aggregate functions 𝜌𝑒→𝑣, 𝜌𝑒→𝑢, 𝜌𝑣→𝑢

Invariant to permutations of the input

Variable number of arguments

Implementation: sum, average, min, max

Edges determine which objects interact
➔ Computational dependency reflects relational structures

Reuse of update function
➔ Allows combinatorial generalization 
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Graph Networks: Encode-Process-Decode

GN blocks can be combined into more complex models

A common pattern is Encode-Process-Decode

Encode the input graph 𝐺𝑖𝑛 into the latent representation 𝐺𝑙𝑎𝑡,𝑖𝑛

Run a GN block  multiple times (× 𝑀) on 𝐺𝑙𝑎𝑡,𝑖𝑛 producing 𝐺𝑙𝑎𝑡,𝑜𝑢𝑡

Decode the latent representation 𝐺𝑙𝑎𝑡,𝑜𝑢𝑡 into the output graph 𝐺𝑜𝑢𝑡

Encoding into a latent representation
allows for ML efficient data processing

Multiple processing steps allow the
network to propagate information
along the edges of the graph

GN𝑒𝑛𝑐 GN𝑑𝑒𝑐

GN𝑐𝑜𝑟𝑒

x× 𝑀

𝐺𝑖𝑛 𝐺𝑜𝑢𝑡

𝐺𝑙𝑎𝑡,𝑖𝑛 𝐺𝑙𝑎𝑡,𝑜𝑢𝑡
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Overview

Introduction

Scene Representations

Machine Learning for Object Relations

Leveraging Object Relations

Bimanual Action Recognition

Placing Objects Based on Verbal Commands

Support Relations for Safe Bimanual Manipulation
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Overview

Introduction

Scene Representations

Machine Learning for Object Relations

Leveraging Object Relations (@H2T)

Bimanual Action Recognition

Placing Objects Based on Verbal Commands

Support Relations for Safe Bimanual Manipulation
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Bimanual Action Recognition: Goal

In a bimanual manipulation task, both hands perform different actions like 
holding, pouring, stirring, etc.

Goal: Recognize actions of both hands

Idea: Use spatial relations between 
hands and objects

Challenges:

Variable number of unordered objects

Relevant and irrelevant objects Ground Truth
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Bimanual Action Recognition: Preprocessing

Extract spatial relations from RGB-D video of task execution. 

Per frame:

Estimate bounding boxes 
of hands and objects

Extract spatial relations
between them

Result:

List of predicates

Each predicate denotes
one spatial relation between 
a pair of objects

Depth

RGB

3D bounding boxes
instance tracking

Contact(HandR, Knife)
Contact(HandL, Board)
...
Above(Knife, Board)
Above(Banana, Board)
Above(Board, Bowl)
...
FixedMovingTogether(HandR, Knife)
...

Spatial relations as 
list of predicates
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Graph Network
Encode-Process-Decode Model

Spatial Relations as 
Scene Graph

Distribution of 
Action Probabilities

hold
pour
stir
hammer
...

GN Block

Bimanual Action Recognition: Overview

Dreher, C. R. G., Wächter, M. and Asfour, T., Learning Object-Action Relations from Bimanual 
Human Demonstration Using Graph Networks, Robotics and Automation Letters (RA-L), 2020

Contact(HandR, Knife)
Contact(HandL, Board)
...
Above(Knife, Board)
Above(Banana, Board)
Above(Board, Bowl)
...
FixedMovingTogether(HandR, 
Knife)
...

Spatial Relations as 
List of Predicates
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Bimanual Action Recognition: Build Scene Graph

Encode spatial relations in scene graph:

Nodes: Hands and objects

Edges: Relations between hands and objects

Scene Graph

Contact(HandR, Knife)
Contact(HandL, Board)
...
Above(Knife, Board)
Above(Banana, Board)
Above(Board, Bowl)
...
FixedMovingTogether(HandR, 
Knife)
...

List of Predicates

HandRHandL

Banana Knife

Board

Contact ✓

Above 

FixedMovingTogether ✓

...

Contact ✓

Above ✓

...
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Graph Network
Encode-Process-Decode Model

Spatial Relations as 
Scene Graph

Distribution of 
Action Probabilities

hold
pour
stir
hammer
...

GN Block

Bimanual Action Recognition: Overview

Dreher, C. R. G., Wächter, M. and Asfour, T., Learning Object-Action Relations from 
Bimanual Human Demonstration Using Graph Networks, RA-L (2020)

Contact(HandR, Knife)
Contact(HandL, Board)
...
Above(Knife, Board)
Above(Banana, Board)
Above(Board, Bowl)
...
FixedMovingTogether(HandR, 
Knife)
...

Spatial Relations as 
List of Predicates
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Bimanual Action Recognition: Graph Network (I)

Encode scene graph for Graph Network: Input graph

Node attributes: 1-hot encoding of object class 
𝑣𝑖 = 0 1 0 … 0 ∈ 0,1 12

Edge attributes: 0/1-vector of relations
𝑒𝑘 = 1 0 1 0 … 0 ∈ 0,1 15

Global attribute: unused

HandR 0 1 0 0 0 0 0 0 0 0 0 0

Contact ✓

Above 

FixedMoving
Together

✓

...

1 0 1 0 0 0 0 1 0 0 0 1 0 0 0

number of object classes

number of spatial relations

Contact FixedMovingTogether

Above

HandR



Robotics III – Sensors and Perception| Chapter 684

Bimanual Action Recognition: Graph Network (II)

Encode action classification for Graph Network: Output graph

Node and edge attributes: unused

Global attribute output: Action probabilities (softmax layer)

𝑢′ = 𝑝1 𝑝2 𝑝3 … 𝑝14 ∈ 0,1 14, σ𝑖 𝑝𝑖 = 1

Global attribute target (label): 1-hot encoding of action (right hand)
𝑢′ = 0 1 0 … 0 ∈ 0,1 14

Left hand: next slide

0 0 0 0 0 0 0 1 0 0 0 0 0 0

Pouring

number of action classes

Cutting Sawing



Robotics III – Sensors and Perception| Chapter 685

Bimanual Action Recognition: Graph Network (III)

Global attribute target (label): 1-hot encoding of action (right hand)

Recognition of left hand’s action:

Mirror input graph (HandL↔ HandR, left↔ right) and classify again.

Same as mirroring RGB image and running processing (feature extraction) again.

Bimanual action recognition:

Run the graph network twice.

1x on original scene graph + 1x on mirrored scene graph

⇒ Inductive bias: Left and right hand behave similarly.

Network can be smaller (e.g., output size: 14 instead of 28)

Reuse data for both hands (2 scene graphs per frame)



Robotics III – Sensors and Perception| Chapter 686

Graph Network
Encode-Process-Decode Model

Spatial Relations as 
Scene Graph

Distribution of 
Action Probabilities

hold
pour
stir
hammer
...

GN Block

Bimanual Action Recognition: Overview

Dreher, C. R. G., Wächter, M. and Asfour, T., Learning Object-Action Relations from 
Bimanual Human Demonstration Using Graph Networks, RA-L (2020)

Contact(HandR, Knife)
Contact(HandL, Board)
...
Above(Knife, Board)
Above(Banana, Board)
Above(Board, Bowl)
...
FixedMovingTogether(HandR, 
Knife)
...

Spatial Relations as 
List of Predicates
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Bimanual Action Recognition: GN Architecture

Standard Encode-Process-Decode architecture.

All update functions Φ𝑒 , Φ𝑣, Φ𝑢: 
Same network architecture (MLP with two layers of 256 neurons)

All aggregation functions 𝜌𝑒→𝑣, 𝜌𝑒→𝑢, 𝜌𝑣→𝑢: Sum

10 processing steps

These 9 MLPs 
are trained.
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Bimanual Action Recognition: Evaluation Data

KIT Bimanual Actions Dataset

RGB-D videos showing subjects perform 
bimanual actions in a kitchen or 
workshop context

6 subjects × 9 tasks × 10 repetitions 
= 540 recordings

Manual annotations of performed action 
by each hand for each video frame.

First RGB-D dataset for bimanual action 
recognition considering performed 
actions of both hands individually.

Available online at: bimanual-actions.humanoids.kit.edu
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Bimanual Action Recognition: Qualitative Results

Right hand Left hand
Classify action performed by each 
hand in each frame.

Visualize top candidate per hand

Consecutive predictions of the same 
action class result in an action 
segment.
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Bimanual Action Recognition: Quantitative Evaluation

Problem: Very noisy object bounding boxes (resulting from noisy depth data)

wrong object geometry ⇒ wrong spatial relations (especially Contact)

Was the network generally able to recognize the correct action?

Option 1: Is the top predicted action class correct?

Strict to single top candidate.

Discards second-best prediction even if
probability is high.

⇒ Option 2: Is one of the 3 top candidates correct?

Also considers second- and third-best predictions.

Remember: We estimate probabilities for all 14 action classes.

Top 3

Tophold
pour
stir
hammer
...

Action classification
(for 1 hand in 1 frame)

True action
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Leave-one-subject-out cross-validation on manually labelled dataset

F1 score of action classification (mean over 6 folds resulting from 6 subjects)

Confusion matrices:
Predicted vs. true 
action classes

Bimanual Action Recognition: Quantitative Results (I)

Top-3TopF1

Top 0.63

Top 3 0.86
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Top-3

Major confusions:

Place instead of saw, pour, drink, … . 

⇒ No relation to table and orientation considered.

Idle, approach, retreat, lift, place

⇒ Require correct dynamic relations, which are prone   
to noise

Hammer vs. saw

⇒ Thin objects ⇒ 3D bounding box extraction from
depth image not reliable in such cases.

Bimanual Action Recognition: Discussion

Top



Robotics III – Sensors and Perception| Chapter 693

Major confusions:

Place instead of saw, pour, drink, … . 

⇒ No relation to table and orientation considered.

Idle, approach, retreat, lift, place

⇒ Require correct dynamic relations, which are prone   
to noise

Hammer vs saw

⇒ Thin objects ⇒ 3D bounding box extraction from
depth image not reliable in such cases.

Top-3 evaluation

Similar effects observable, although smaller magnitude.

Bimanual Action Recognition: Discussion

Top-3
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Avoiding Side-Effects in Bimanual Manipulation
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Placing Objects Based on Verbal Commands: Goal

Given:

Verbal command specifying the spatial 
relation between two objects.

Goal:

Place an object according to that spatial 
relation.

Idea:

⇒ Find suitable placing position using 
learned polar distributions.

⇒ Adapt movement primitive to move 
object to placing position.

Put the apple tea in front of the corny.

Let the apple tea be on the other side of
the corny.
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Placing Objects

Human

Vision
Match 
Objects

Learned 
Distributions

Movement
Primitive

Adapt

Motion

Sample, Filter, 
Select

Grounded
Polar

DistributionObject 
Features

Verbal 
Command

Polar
Distribution

Match 
Relation

Ground

Target Position

Kartmann, R., Zhou, Y., Liu, D., Paus, F., and Asfour, T., “Representing 
Spatial Object Relations as Parametric Polar Distribution for Scene 
Manipulation Based on Verbal Commands.” IROS, 2020 
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Placing Objects: Sample, Filter, Select

Goal: Adapt target position of movement 
primitive (MP).

Sample 𝑁 candidate target positions.

Discard infeasible candidates.

Collision with other objects

Off the table

Get candidates with top 10% PDF value.

Pick candidate closest to target object’s 
current position. target 

object
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Placing Objects: Execution (1)
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Placing Objects: Execution (2)
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Overview

Introduction

Scene Representations

Machine Learning for Object Relations

Leveraging Object Relations

Bimanual Action Recognition

Placing Objects according to Verbal Commands

Support Relations for Safe Bimanual Manipulation



Robotics III – Sensors and Perception| Chapter 6102

Avoiding Side-Effects in Bimanual Manipulation

Top-down support detected 

⇒ Use safer bimanual manipulation strategy

> lift(Box_4,Box_3,HR)

Precondition 
failed!

Lift

Secure
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Extracting Support Relations through Force Analysis

Contacts

Separating Planes

Acting Force

Support Relation

Contact 

with Normal

Separating Plane 

with Normal

R. Kartmann, F. Paus, M. Grotz and T. 
Asfour, "Extraction of Physically 
Plausible Support Relations to Predict 
and Validate Manipulation Action 
Effects," RA-L (2018)



Robotics III – Sensors and Perception| Chapter 6104

Support Polygon Analysis

For each support relation SUPP 𝐴, 𝐵 :

1. Project 𝐴 to the ground plane ➔ 2D polygon 𝑃A

2. For each object 𝐾 where SUPP 𝐾, 𝐴 :

2.1 Project 𝐾 to the ground plane

2.2 Construct intersection with 𝑃𝐴

3. Build set of polygons: ℙA = 𝑃K ∩ 𝑃A SUPP 𝐾, 𝐴

4. Construct support polygon 𝑃𝑠 from ℙA

5. Compute support area ratio 𝑟𝑠 =
area 𝑃𝑠

area(𝑃𝐴)

6. Assume SUPP 𝐵, 𝐴 if 𝑟𝑠 < 𝑟𝑠,min

𝑃A1.

2.

3.

4.
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Interactive Exploration of Support Relations

Top-down support relations depend on physical properties of the involved 
objects (e.g., mass distribution and friction coefficients)

Interact with the scene to determine top-down support
➔ Bimanual manipulation strategy

Force Measurement Left Hand
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Avoiding Side-Effects in Bimanual Manipulation

Top-down support detected ⇒ Use safer bimanual manipulation strategy

> lift(Box_4,Box_3,HR)

Precondition 

failed!
Lift

Secure
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Safe Bimanual Manipulation Strategy
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Support Relations: Experiments on ARMAR-6
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Introduction
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